skip to main content


Search for: All records

Creators/Authors contains: "Searcy, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Although infrequent, large (Mw7.5+) earthquakes can be extremely damaging and occur on subduction and intraplate faults worldwide. Earthquake early warning (EEW) systems aim to provide advanced warning before strong shaking and tsunami onsets. These systems estimate earthquake magnitude using the early metrics of waveforms, relying on empirical scaling relationships of abundant past events. However, both the rarity and complexity of great events make it challenging to characterize them, and EEW algorithms often underpredict magnitude and the resulting hazards. Here, we propose a model, M‐LARGE, that leverages deep learning to characterize crustal deformation patterns of large earthquakes for a specific region in real‐time. We demonstrate the algorithm in the Chilean Subduction Zone by training it with more than six million different simulated rupture scenarios recorded on the Chilean GNSS network. M‐LARGE performs reliable magnitude estimation on the testing data set with an accuracy of 99%. Furthermore, the model successfully predicts the magnitude of five real Chilean earthquakes that occurred in the last 11 years. These events were damaging, large enough to be recorded by the modern high rate global navigation satellite system instrument, and provide valuable ground truth. M‐LARGE tracks the evolution of the source process and can make faster and more accurate magnitude estimation, significantly outperforming other similar EEW algorithms. This is the first demonstration of our approach. Future work toward generalization is outstanding and will include the addition of more training and testing data, interfacing with existing EEW methods, and applying the method to different tectonic settings to explore performance in these regions.

     
    more » « less
  2. null (Ed.)
    Two additions impacting tables 3 and 4 in ref. [1] are presented in the following. No significant impact is found for other results or figures in ref. [1]. 
    more » « less